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While the classical nucleation theory �CNT� is widely used to predict the rate of first-order phase transitions,
its validity has been questioned due to discrepancies with experiments. We systematically test the individual
components of CNT by computer simulations of the Ising models and confirm its fundamental assumptions
under a wide range of conditions �h=0.01–0.13J, T=0.44–0.84Tc in two-dimensions and h=0.30–0.60J, T
=0.48–0.62Tc in three dimensions�. First, CNT accurately predicts the nucleation rate if the correct droplet free
energy is provided. Furthermore, theoretical prediction of droplet free energy matches numerical results very
well in the two-dimensional �2D� Ising model, if appropriate correction terms are added. This establishes the
2D Ising model as an important reference point where existing theories can predict nucleation rate accurately
with no adjustable parameters.
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Nucleation has been the subject of intense research be-
cause it plays an important role in the dynamics of most
first-order phase transitions �1–3�. For many decades, our
understanding of nucleation has been dominated by the clas-
sical nucleation theory �CNT� �4,5�, because it correctly cap-
tures the qualitative features of the nucleation process, and
predicts the nucleation rate based on bulk material proper-
ties. However, the nucleation rate predicted by CNT often
disagrees with experimental measurements �2�, and this dis-
crepancy has stimulated the search for improved theoretical
models �6–9�. In addition, the fitting parameters, such as
surface tension, often introduced when comparing with ex-
periments, prevent a rigorous test of CNT �3�. Computer
simulation of the Ising model has been repeatedly used to
test nucleation theories �10–16�, with the advantage that the
surface free energy can be obtained very accurately and ex-
trinsic artifacts such as impurity can be completely removed.
Both agreement and disagreement between CNT and com-
puter simulations have been reported. Unfortunately, it is still
not clear what causes the discrepancy between CNT predic-
tions and computer simulations of the Ising model, the sim-
plest and most thoroughly studied model for first-order phase
transitions.

A widely used form of CNT is the Becker-Döring theory
�4�, which predicts the nucleation rate by considering the
spontaneous formation of droplets of the stable phase in the
background of the metastable phase. The theory has two
parts that can be tested separately. In part I, CNT assumes
that the system can be coarse grained into a one-dimensional
�1D� Markov chain characterized by the size n of the largest
droplet. The steady-state solution of the Markov chain pre-
dicts the nucleation rate to be

I = fc
+� exp�−

Fc

kBT
� �1�

where kB is Boltzmann’s constant, T is temperature and Fc is
the maximum of the droplet free energy F�n� �17�. The pre-
exponential factors will be discussed later. In part II, CNT

assumes that the droplet free-energy function can be written
as

F�n� = �S − ��n �2�

where � is the macroscopic surface tension and �� is the
chemical-potential difference between the two phases. S is
the surface area of a droplet. When discrepancy is observed
between CNT predictions and computer simulations, it is im-
portant to know whether part I or part II �or both� is respon-
sible so that the theory can be modified appropriately.

In this study, we tested part I and part II of CNT sepa-
rately on homogeneous nucleation in both two-dimensional
�2D� and three-dimensional �3D� Ising models. Part I of
CNT is confirmed by excellent agreement between the nucle-
ation rate computed from the forward flux sampling �18,19�
method and that given by Eq. �1�, in which Fc is computed
by umbrella sampling �20�. The agreement is observed over a
wide range of conditions where the nucleation rate varies by
40 orders of magnitude. The committor probability distribu-
tion of droplets with critical size nc is sharply peaked at 50%
in the 2D Ising model, further confirming the droplet size n
as a good reaction coordinate. On the other hand, part II of
CNT does not agree with the umbrella sampling results. For
the 2D Ising model, excellent agreement is recovered if a
logarithmic term 5

4kBT ln n and a constant are added to Eq.
�2�. Both terms can be derived analytically from existing
theories �7,21�. This work establishes the 2D Ising model as
a reference point where CNT, with appropriate corrections,
predicts the nucleation rate accurately without any fitting pa-
rameters.

The Ising model is described by the Hamiltonian

H = − J�
�i,j	

sisj − h�
i

si �3�

where J is the coupling constant and h is the external mag-
netic field. The spin variable si at site i can be either +1 �up�
or −1 �down�, and the sum ��i,j	 is over nearest neighbors of
the spin lattice. In our simulations, we set J=1, h�0 and
start with a metastable state in which si=−1 for most of the

PHYSICAL REVIEW E 81, 030601�R� �2010�

RAPID COMMUNICATIONS

1539-3755/2010/81�3�/030601�4� ©2010 The American Physical Society030601-1

http://dx.doi.org/10.1103/PhysRevE.81.030601


spins. The dynamics follows the Metropolis single-spin-flip
Monte Carlo �MC� algorithm with random choice of trial
spin. The simulation time step is measured in units of MC
step per site �MCSS�. The 2D model consists of a 100
�100 square lattice and the 3D model consists of a 32
�32�32 simple-cubic lattice. Periodic boundary conditions
are applied to all directions, in order to model homogeneous
nucleation.

In order to test part I of CNT, which predicts the nucle-
ation rate by assuming the system can be coarse grained to a
1D Markov chain, we must have an independent way to
compute the nucleation rate without relying on this assump-
tion. It is also important to sample a wide range of �T ,h�
conditions and collect sufficient statistics for every condi-
tion. This precludes the use of brute-force Monte Carlo simu-
lations, which become very inefficient when the nucleation
rate is low. The method we choose is forward flux sampling
�FFS� �18�. It has been developed to sample rare events in
nonequilibrium systems which do not need to obey detailed
balance. The transition rate I has also been proven to be
independent of the choice of the order parameter �19�, as
long as it distinguishes the initial and final states of the tran-
sition.

In FFS, a series of interfaces is defined in the phase space
to separate the initial state A and the final state B, through an
order parameter �. Here � is the size of the largest droplet.
State A is defined as the phase-space region in which �
	�A, while state B corresponds to ���n. The interfaces
between A and B are defined as hypersurfaces on which �
=�i, i=0,1 ,2 , . . . ,n−1, �A	�0	 ¯ 	�n. The transition
rate I from A to B is given by

I = I0P��n
�0� �4�

where I0 is the average flux across the interface �=�0 �i.e.,
leaving state A�. P��n 
�0� is the probability that a trajectory
leaving interface �0 will reach interface �n without returning
to state A. It is calculated by multiplying together P��i+1 
�i�,
i=0,1 , . . . ,n−1, each computed from MC simulations start-
ing at interface �i.

As an example, Fig. 1�a� plots P��i 
�0� for the 2D Ising
model at �kBT ,h�= �1.5,0.05�. Here we choose �0=24 and
�n=1200. We find I0=1.45�10−8 MCSS−1 from a brute-

force Monte Carlo simulation with 107 MCSS. 15 000 con-
figurations are then collected at each interface �i, from which
we obtain P��n 
�0�=1.92�10−11. Following Eq. �4�, the
nucleation rate is IFFS=2.78�10−19 MCSS−1.�22�

To compare this result with part I of CNT, we need to
compute all the terms on the right-hand side of Eq. �1�. First,
we compute the droplet free energy F�n� by umbrella sam-
pling, using the size of the largest droplet as the order pa-
rameter and a parabolic bias function, 0.1kBT�n− n̄�2, where
n̄ is the center of each window �20�. The result for �kBT ,h�
= �1.5,0.05� is plotted in Fig. 2. The maximum occurs at nc
=496 giving a free-energy barrier of Fc=61.3. The second
derivative of F�n� gives the Zeldovich factor �23�, �
=0.0033, defined as ���
 /2�kBT�1/2 where 

=−�2F�n� /�n2 
n=nc

.
fc

+ is the effective attachment rate of single spins to the
critical droplet. To compute fc

+, we collect an ensemble con-
figurations from umbrella sampling, when the bias potential
is centered at the critical droplet size. Using each configura-
tion as an initial condition, we run Monte Carlo simulations
and observe the droplet size fluctuation with time. The effec-
tive attachment rate is obtained from fc

+= ��n2�t�	 / �2t�,
where ��n2�t�	 is the mean-square fluctuation of the droplet
size, averaged over the ensemble. At �kBT ,h�= �1.5,0.05�,
we obtain fc

+=39.1 MCSS−1.
Inserting the values of fc

+, �, and Fc into Eq. �1�, we find
CNT prediction of the nucleation rate IBD=2.37
�10−19 MCSS−1. This is very close to the rate IFFS=2.78
�10−19 MCSS−1 computed from FFS.

We have computed the nucleation rate using these two
methods over a wide range of conditions: h=0.01–0.13, T
=0.44–0.84Tc for two dimensions and h=0.30–0.60, T
=0.48–0.62Tc for three dimensions, where Tc is the critical
temperature at zero field �kBTc=2.269 in two dimensions and
4.512 in three dimensions�. The nucleation rate over these
conditions spans more than 40 �20� orders of magnitude for
the 2D �3D� Ising model, but the results of the two methods
closely match each other, as shown in Fig. 3. Under most
conditions, the rates predicted by the two methods are within
50% of each other. This strongly confirms that for the pur-
pose of computing the nucleation rate, it is valid to coarse
grain the Ising model to a 1D Markov chain using the size of
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FIG. 1. The probability P��i 
�0� �solid line� of reaching inter-
face �i from �0 and average committor probability PB��i� �circles�
over interface �i at �kBT ,h�= �1.5,0.05� for the 2D Ising model. The
50% committor point is marked by �.

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70
F

c
=61.3

n
c
=496

umbrella
sampling

Eq. (6)

Eq. (5)

τ k
B

T ln n

d

n

F
(n

)

FIG. 2. Droplet free energy F�n� of the 2D Ising model at
�kBT ,h�= �1.5,0.05� obtained by umbrella sampling �circles� is
compared with Eq. �5� �dashed line� and Eq. �6� �solid line�.
5
4kBT ln n �dash-dot line� and d �dotted line� from Eq. �6� are also
plotted. The maximum of F�n� is marked by �.
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the largest droplet as the reaction coordinate. Detailed bal-
ance �16� between neighboring states along the Markov
chain, as is assumed in the derivation of Eq. �1�, is also
confirmed.

Part I of CNT assumes that the size of the largest droplet
is a good reaction coordinate for the nucleation process. To
test the quality of this reaction coordinate, we perform the
following two calculations on the committor probability,
which is the probability that a spin configuration will reach
state B before reaching state A. First, we compute the aver-
age committor probability PB��� over each interface �=�i in
our FFS simulation, and determine the critical droplet size
nc

FFS at which PB�nc
FFS�=0.5. For all �T ,h� conditions in this

study, nc
FFS matches the maximum point nc

US of the free en-
ergy obtained from umbrella sampling within 2%. The data
for the 2D Ising model are shown in Fig. 4�a�.

Second, we perform a more stringent test of the distribu-
tion of committor probability PB within an ensemble ex-
tracted from umbrella sampling, in which the largest droplet
in all configurations has size nc. If n were a perfect reaction
coordinate, then all configurations in this ensemble should
have PB exactly equal to 0.5. Figure 4�b� shows that at kBT
=1.5 and h=0.05, PB in this ensemble is sharply peaked at
0.5. 95% of these spin configurations have PB values within
the range of 0.45 to 0.55. This is a direct evidence that the
largest droplet size is an excellent reaction coordinate for the
nucleation process in the 2D Ising model. The spread of PB
in the 3D Ising model is about twice the width of the 2D
Ising model, consistent with a previous report �15�.

We now turn to part II of CNT, and examine the validity
of the classical expression of the droplet free energy, Eq. �2�.
The 2D Ising model is ideal for this test because the surface

free energy � is known analytically as a function of tempera-
ture �14,24�. Following the definition of the effective surface
tension in �14�, Eq. �2� becomes

F�n� = 2��n�eff�T� − 2hn , �5�

where we have used ��
2h �25�. As shown in Fig. 2, sig-
nificant discrepancy exists between the CNT expression of
F�n� and our umbrella sampling results. Furthermore, the
maximum of Eq. �5� predicts that the size of the critical
droplet would be nc=��eff

2 �T� / �4h2�. This is significantly
smaller than our numerical results, as shown in Fig. 4�a�.

We find that agreement can be restored if two correction
terms are added to the free-energy expression, i.e.,

F�n� = 2��n�eff�T� − 2hn + �kBT ln n + d�T� . �6�

The logarithmic correction term originates from Langer’s
field theory which accounts for the shape fluctuation of the
critical droplet, and �= 5

4 for the 2D Ising model �7,21,26�.
The term d�T�=8−2���eff�T� is added so that the free en-
ergy of an isolated spin, F�1�=8 is correctly captured �27�.
With these two correction terms, Eq. �6� agrees with our
umbrella sampling data over all conditions within 1% for the
2D Ising model. This confirms that macroscopic surface ten-
sion can be used to describe the free energy of very small
droplets, as long as the two correction terms are added.
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FIG. 3. �Color online� The nucleation rate I computed by FFS
�open symbols� and CNT �filled symbols� using free energies ob-
tained from umbrella sampling in the �a� 2D and �b� 3D Ising
models.
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FIG. 4. �Color online� �a� The critical droplet size nc obtained
from FFS �filled symbols� and umbrella sampling �open symbols�.
nc predicted by CNT, Eq. �5� �dotted line� and by Eq. �6� �solid line�
are plotted for comparison. �b� Committor distribution of an en-
semble of configurations all with droplet size n=nc=495 at
�kBT ,h�= �1.5,0.05� for the 2D Ising model. Insets show typical
droplet shapes at different committor probabilities. Contrary to the
assumption in CNT, the droplet shape is not circular.
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Without these two correction terms, CNT would severely
underestimate the free-energy barrier �see Fig. 2� and over-
estimate the nucleation rate by many orders of magnitude.
While previous studies �6–8� have suggested that the
�kBTlnn correction term improves the description of the
droplet free energy, this is the direct confirmation of the
field-theoretic prediction �7,21,28�, �= 5

4 in two dimensions,
over a wide range of �T ,h� conditions. In addition, our re-
sults show the importance of correctly accounting for the
temperature dependence of surface tension, �eff. The neglect
of this temperature dependence has contributed to the dis-
crepancy between CNT predictions and numerical results on
the nucleation rate in both 2D and 3D Ising models
�12,13,15�.

In summary, we have confirmed part I of CNT in 2D and
3D Ising models, which means that it can predict the nucle-

ation rate accurately, if the correct droplet free energy is
used. On the other hand, part II of CNT concerning the drop-
let free energy is inaccurate. In two dimensions, the classical
expression of droplet free energy can be brought to excellent
agreement with numerical results, as long as two corrections
terms are added. This establishes the 2D Ising model as an
important reference point where existing nucleation theory
can accurately predict nucleation rate without any adjustable
parameters. Further investigation is needed to find out why
the field-theoretic correction works so well in two dimen-
sions, but not in three dimensions.
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